NODE=G033M

NODE=G033M

NODE=G033M

OCCUR=2

NODE=G033M;LINKAGE=CH

NODE=G033M;LINKAGE=FN

NODE=G033M;LINKAGE=A

VALUE (eV)

 $< 8 \times 10^4$

J = 2

graviton MASS

All of the following limits are obtained assuming Yukawa potential in weak field limit. VANDAM 70 argue that a massive field cannot approach general relativity in the zero-mass limit; however, see GOLD-HABER 10 and references therein. h_0 is the Hubble constant in units of 100 km s $^{-1}$ Mpc $^{-1}$.

The following conversions are useful: 1 eV = 1.783×10^{-33} g = 1.957×10^{-6} m_e ; $\chi_C = 1.973 \times 10^{-7}$ m.

DOCUMENT ID

COMMENT

73 2γ decay

<7	× 10 ⁻³²	1 CHOUDHURY	04	Weak gravitational lensing
• • •	We do not use the following	data for averages	, fits,	limits, etc. • • •
<7.6	× 10 ⁻²⁰	² FINN	02	Binary Pulsars
		³ DAMOUR	91	Binary pulsar PSR 1913+16
< 2 >	$\begin{array}{c} (10^{-29} h_0^{-1}) \\ \times 10^{-28} \end{array}$	GOLDHABER	74	Rich clusters
<7	× 10 ⁻²⁸	HARE	73	Galaxy

 1 CHOUDHURY 04 sets limits based on nonobservation of a distortion in the measured values of the variance of the power spectrum.

HARE

 2 FINN 02 analyze the orbital decay rates of PSR B1913+16 and PSR B1534+12 with a possible graviton mass as a parameter. The combined frequentist mass limit is at 90%CL.

graviton REFERENCES

NODE=G033

0 = 53297
0 = 50208
0 = 48874
0 = 43820
0 = 43819
0 = 43497
0 = 43498
0 = 43499

³ DAMOUR 91 is an analysis of the orbital period change in binary pulsar PSR 1913+16, and confirms the general relativity prediction to 0.8%. "The theoretical importance of the [rate of orbital period decay] measurement has long been recognized as a direct confirmation that the gravitational interaction propagates with velocity *c* (which is the immediate cause of the appearance of a damping force in the binary pulsar system) and thereby as a test of the existence of gravitational radiation and of its quadrupolar nature." TAYLOR 93 adds that orbital parameter studies now agree with general relativity to 0.5%, and set limits on the level of scalar contribution in the context of a family of tensor [spin 2]-biscalar theories.